Application of the Giroud – Han Design Method for Geosynthetic Reinforced Unpaved Roads with TenCate™ Mirafi® Geosynthetics

Prepared by:
TenCate® Geosynthetics Americas
365 South Holland Drive
Pendergrass, GA 30567
Tel. (706) 693-2226
Fax (706) 693-2044
www.tencate.com

February 18, 2014
TenCate Mirafi® geosynthetics have been used and designed in unpaved road projects since the 1970’s¹ and into paved roadway applications since the 1980’s². Mirafi® geosynthetics are used in roadways to reduce construction time, construction materials, construction costs, and to increase the usable life of the roadway. The benefits that geosynthetics provide in roadway construction are well-documented. The United States Department of Transportation Federal Highway Administration (FHWA) offers their expert guidance on the benefits of using geosynthetic in roadways: “Geosynthetics have been found to provide significant improvement in pavement construction and performance... The most common of all uses of geosynthetics is in road and pavement construction. Geotextiles placed at the subgrade increase stability and improve performance of pavement constructed on high fines subgrade soils (i.e., soils containing high quantities of silt and/or clay particles)...³” Using a geotextile keeps the subgrade and gravel layers from intermixing, thus keeping the structural integrity of the roadway intact. Further, an estimated 80% of all roads in the United States are unpaved, using only gravel to construct the roadway. According to an American Association of State Highway and Transportation Officials (AASHTO) report, approximately 20% of roadways fail due to insufficient structural strength.

For unpaved road and subgrade stabilization design, the Giroud-Han (G-H) design method developed an equation that is used to calculate the required thickness of graded aggregate. Publication of the design method in 2004⁸,⁹ in the ASCE Journal of Geotechnical and Geoenvironmental Engineering culminated after several years of research, dating back to the Giroud-Noiray study published in 1981¹⁰. The G-H design equation has also been referenced in the “Geosynthetic Design and Construction Guidelines” manual by the Federal Highway Administration³. It is one of the most recognized and widely accepted methods of determining the structural contribution of both geotextiles and geogrids in aggregate-only based roadways. The G-H design method uses a generic iterative equation that can be implemented for both unreinforced and geosynthetic reinforced gravel roadways:
Where: h = required compacted aggregate (gravel) thickness (m);
CF = calibration factor for the geosynthetic used in design ($= \{0.661-1.006J^2\}$ for punched and drawn biaxial geogrids);
N = the number of axle passes;
RE = limited modulus ratio of compacted aggregate to subgrade soil (maximum = 5.0);
P = wheel load (kN);
r = radius of the equivalent tire contact area (m);
s = allowable rut depth (mm; for rut depths between 50 mm and 100 mm);
fs = reference rut depth (75 mm);
Nc = bearing capacity factor (3.14 for unreinforced; 5.14 for geotextile reinforced; 5.71 for geogrid reinforced);
Cu = undrained shear strength of subgrade (taken as 30 kPa x CBR of the subgrade soil for CBR’s between 1% and 5%);
$P/\pi r^2$ = tire contact pressure (kPa), and is equivalent to the tire pressure (p).

It is important to note that the design method has been calibrated by Giroud-Han for surface rutting between 50 mm (2") and 100 mm (4") and for subgrade strengths between 30 kPa (CBR = 1%) and 150 kPa (CBR = 5%) and for a compacted aggregate layer strength of 600 kPa (CBR = 20%). Determining the calibration factor (CF) for the geosynthetics used in the design procedure requires an extensive calibration for each individual material. The calibration processes can be costly and time consuming since determining the CF for a geosynthetic is also a function of the design variables r, h, RE, P, s, and Cu, that are derived from comprehensive construction and testing practices.
pressures in the subgrade and aggregate were monitored. The CF values from this extensive testing were established for Mirafi® geosynthetics following the G-H design method calibration work published by Pokharel at the University of Kansas. The level of tensile, separation and pore pressure dissipation benefits that Mirafi® RSi-Series and H2Ri woven geotextiles provide is unequaled compared to other geosynthetics. Their superior performance can be attributed to their high tensile moduli at low strains, their enhanced drainage and filtration capacities and their exceptional interaction with roadway soils and aggregates. Choose to use Mirafi® H2Ri over RS380i when your project’s subgrade soils can benefit from its enhanced lateral wicking capacity, pore pressure dissipation and capillary break functions that H2Ri can provide to the roadway.

Table 1, below, shows the exceptional performance of these Mirafi® geosynthetics in the form of an estimated aggregate thickness reduction for an example roadway cross section.

Table 1: Estimated Aggregate Layer Reduction Percentages Using TenCate Mirafi® Geosynthetics Using the Giroud-Han Unpaved Road Design Method.

<table>
<thead>
<tr>
<th>Subgrade Strength</th>
<th>H2Ri²</th>
<th>RS580i²</th>
<th>RS380i²</th>
<th>RS280i²</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBR (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td>59%</td>
<td>57%</td>
<td>53%</td>
<td>39%</td>
</tr>
</tbody>
</table>

Notes: 1 Estimates are for 750,000 applied loads, 14 kip wheel load, 110 psi tire pressure, 1.0 inch rut depth, roadway aggregate CBR = 20% and an overall factor of safety of 1.0. 2 Recommended minimum aggregate layer thickness not less than 6” for Mirafi® geosynthetics.

An example design calculation on the next page provides an analysis for the calculated savings in the amount of aggregate needed and related cost savings for a typical unpaved road section over a soft subgrade soil using Mirafi® RS380i and designed with the G-H unpaved road design method.
Example

A section of unpaved road that will support 12,000 axle passes from a 9,000 lb dual wheel load with 100 psi tire pressure is to be constructed on a soft subgrade with a CBR value of 1.6% and the tolerable surface rutting will be 1.5 inches.

Calculate the cost savings per lane mile that results from using Mirafi® RS380i in the roadway cross section, at the subgrade – aggregate layer interface.

Given:
Number of axle passes (N) = 12,000
Wheel load (P) = 9,000 lb, = 40 kN
Tire pressure = 80 psi, = 552 kPa
Surface rutting = 1.5 inch, = 37.5 mm
Subgrade CBR = 1.6%, = 48 kPa = Cu
Geosynthetic Reinforcement is Mirafi® RS380i

Solution:
First, calculate the required roadway aggregate thickness without a geosynthetic using the Giroud-Han design method. The bearing capacity Nc factor for an unreinforced subgrade soil is 3.14 (or π) and the CF for an unreinforced roadway is 0.661. Since the solution for “h” requires iteration, meaning one must start with an assumed value for “h” and then the new value of “h” obtained from solving the equation is then input back into the equation to solve for another new value for “h.” This process is repeated until the difference between the input value of “h” and the solved value of “h” is very small (i.e. the difference is negligible). Using the G-H design equation, the calculated unreinforced thickness “h” = 24 inches (600 mm).

Next, calculate the required thickness of roadway aggregate using Mirafi® RS380i as the geosynthetic reinforcement. The Nc factor for a geotextile using the G-H method is 5.14 (π + 2) and the CF for Mirafi® RS380i for these project parameters is 0.061. The calculated thickness for the roadway using Mirafi® RS380i is 6 inches (150 mm).

Savings:

The aggregate layer thickness can be reduced by approximately 18 inches (450 mm) using Mirafi® RS380i. If aggregate cost $30/ton, the aggregate material cost savings would be approximately $190,000 per lane mile.
Conclusion

The example above shows only the aggregate material cost savings that can be realized by using Mirafi® RS380® geotextile in an unpaved roadway. Other benefits of Mirafi® RSi-Series and H2R® geotextiles are construction cost savings in undercut, hauling and labor costs, as well as shortened construction schedules. Long-term savings are realized through increased roadway life and a reduction in maintenance and rehabilitation costs. Sometimes the use of Mirafi® RSi-Series or H2R® geotextile makes an otherwise impossible project feasible.

Visit the “Tech Info” section of our website, www.Mirafi.com, for case studies, installation guidelines, technical data sheets and design guidelines for other civil engineering applications.

Disclaimer: TenCate assumes no liability for the accuracy or completeness of this information or for the ultimate use by the purchaser. TenCate disclaims any and all express, implied or statutory standards, warranties or guarantees, including without limitation any implied warranty as to merchantability or fitness for a particular purpose or arising from a course of dealing or usage of trade as to any equipment, materials, or information furnished herewith. This document should not be construed as engineering advice.
References:

13. AASHTO (2009), Standard Practice for Geosynthetic Reinforcement of the Aggregate Base Course of Flexible Pavement Structures - R 50-09, American Association of State Transportation and Highway Officials, Washington, D.C.